Deteksi Insomnia Menggunakan Sensor GSR dan Max30102 Metode Naïve Bayes
DOI:
https://doi.org/10.30736/informatika.v10i1.1370Keywords:
Insomnia, Elektrokardiogram, Naïve Bayes, ESP32, MAX30102, GSRAbstract
Insomnia adalah gangguan tidur yang menurunkan kualitas istirahat dan membuat sulit tertidur atau mempertahankan tidur. Insomnia dapat menyerang berbagai kalangan dan disebabkan oleh berbagai faktor. Deteksi dini penting untuk mencegah insomnia menjadi kondisi serius. Polysomnography adalah metode medis konvensional untuk mendeteksi insomnia, namun memerlukan peralatan kompleks dan pasien harus menginap di rumah sakit. Untuk itu, penelitian ini mengusulkan deteksi dini insomnia dengan alat portabel berbasis sinyal elektrokardiogram (EKG) yang memiliki fitur P, Q, R, S, dan T yang dapat dianalisis. Metode yang digunakan adalah Naive Bayes, yang mengklasifikasikan data sebagai insomnia atau normal berdasarkan probabilitas tertinggi. Naive Bayes dipilih karena penelitian sebelumnya menunjukkan akurasi 80% dalam mendeteksi apnea tidur. Penelitian ini menggunakan mikrokontroler ESP32 dan sensor MAX30102 untuk akuisisi sinyal EKG, yang efisien dari segi biaya dan daya. Hasil penelitian menunjukkan akurasi sensor MAX30102 sebesar 97,73% dan sensor GSR sebesar 90% dalam mendeteksi aktivitas listrik pada kulit jari. Klasifikasi Naive Bayes mencapai akurasi 90% dalam membedakan antara kondisi normal dan insomnia.
Downloads
References
Iman Fahruzi, E. Purnama, and Mauridhi Hery Purnomo, “Asesmen ECG-Apnea Satu Sadapan untuk Peningkatan Akurasi Klasifikasi Gangguan Tidur Berdasarkan AdaBoost,” JNTETI (Jurnal Nasional Teknik Elektro dan Teknologi Informasi), May 2020, doi: https://doi.org/10.22146/jnteti.v9i2.159.
D. Riemann, L. B. Krone, K. Wulff, and C. Nissen, “Sleep, insomnia, and depression,” Neuropsychopharmacology, vol. 45, no. 1, pp. 74–89, May 2019, doi: https://doi.org/10.1038/s41386-019-0411-y.
Y. Sincihu, H. Daeng, and P. Yola, “Hubungan Kecemasan dengan Derajat Insomnia pada Lansia,” Jurnal Ilmiah Kedokteran Wijaya Kusuma, vol. 7, no. 2580–5967, pp. 15–30, Mar. 2018.
E. Urtnasan, J.-U. Park, E.-Y. Joo, and K.-J. Lee, “Automated Detection of Obstructive Sleep Apnea Events from a Single-Lead Electrocardiogram Using a Convolutional Neural Network,” Journal of Medical Systems, vol. 42, no. 6, Apr. 2018, doi: https://doi.org/10.1007/s10916-018-0963-0.
L. B. Marinho, N. de M. M. Nascimento, J. W. M. Souza, M. V. Gurgel, P. P. Rebouças Filho, and V. H. C. de Albuquerque, “A novel electrocardiogram feature extraction approach for cardiac arrhythmia classification,” Future Generation Computer Systems, vol. 97, pp. 564–577, Aug. 2019, doi: https://doi.org/10.1016/j.future.2019.03.025.
“View of Sleep Heart Rate Variability Analysis and k-Nearest Neighbours Classification of Primary Insomnia,” Uthm.edu.my, 2024. https://penerbit.uthm.edu.my/ojs/index.php/ ijie/article/view/3475/1729 (accessed Nov. 11, 2024).
M. Ozgeyik, T. Sen, M. A. Astarcioglu, M. Okay, and A. Uslu, “Comparison of Heart Rate Variability between Shift and Rest Days in Nurses Working at Coronary Intensive Care Unit,” Acta Medica, pp. 1–7, Feb. 2021, doi: https://doi.org/10.32552/2021.actamedica.531.
Fudholi, D. H., Nayoan, R. A. N., Suyuti, M., & Rahmadi, R. (2021). Deteksi Indikasi Kelelahan Menggunakan Deep Learning. J-SAKTI (Jurnal Sains Komputer dan Informatika), 5(1), 1-9.
N. L. Molin, C. Molin, R. J. Dalpatadu, and A. K. Singh, “Prediction of obstructive sleep apnea using Fast Fourier Transform of overnight breath recordings,” Machine Learning with Applications, vol. 4, p. 100022, Jun. 2021, doi: https://doi.org/10.1016/j.mlwa.2021.100022.
Urtnasan, E., Park, J. U., & Lee, K. J. (2020). Automatic detection of sleep-disordered breathing events using recurrent neural networks from an electrocardiogram signal. Neural computing and applications, 32, 4733-4742.
A. M. Putrada, M. Abdurohman, and A. G. Putrada, “Increasing Smoke Classifier Accuracy using Naïve Bayes Method on Internet of Things,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 19–26, Nov. 2018, doi: https://doi.org/10.22219/kinetik.v4i1.704.
L. O. Aghenta and M. T. Iqbal, “Low-Cost, Open Source IoT-Based SCADA System Design Using Thinger.IO and ESP32 Thing,” Electronics, vol. 8, no. 8, p. 822, Jul. 2019, doi: https://doi.org/10.3390/electronics8080822.
R. H. Ria Hariri, L. H. Lutfi Hakim, and R. F. L. Riska Fita Lestari, “Sistem Monitoring Detak Jantung Menggunakan Sensor AD8232,” JOURNAL ZETROEM, vol. 2, no. 2, Oct. 2020, doi: https://doi.org/10.36526/ztr.v2i2.1017.
Irmayanti Irmayanti and L. T. Arlym, “ASUHAN KEBIDANAN BERKESINAMBUNGAN PADA NY. K DI PUSKESMAS CIKAMPEK KARAWANG JAWA BARAT TAHUN 2023,” PREPOTIF : JURNAL KESEHATAN MASYARAKAT, vol. 8, no. 1, pp. 2507–2519, 2023, doi: https://doi.org/10.31004/prepotif.v8i1.24018.
Y. Li, W. Pan, K. Li, Q. Jiang, and G. Liu, “Sliding Trend Fuzzy Approximate Entropy as a Novel Descriptor of Heart Rate Variability in Obstructive Sleep Apnea,” IEEE Journal of Biomedical and Health Informatics, vol. 23, no. 1, pp. 175–183, Jan. 2019, doi: https://doi.org/10.1109/jbhi.2018.2790968.
A. Bijaksana Putra, H. Muhadi, and I. Melinda Putri, “ANALISIS SENTIMEN MASKAPAI PENERBANGAN MENGGUNAKAN METODE NAIVE BAYES DAN SELEKSI FITUR INFORMATION GAIN,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 7, no. 2355–7699, pp. 599–606, Jun. 2020, doi: https://doi.org/10.25126/jtiik.202071947.
M. K. Stoller, “Economic effects of insomnia,” Clinical therapeutics, vol. 16, no. 5, pp. 873–97; discussion 854, Sep. 1994, Available: https://europepmc.org/article/med/7859246
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 M. Taufiq Fadli R, Andi Chairunnas, M Iqbal Suriansyah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Joutica : Journal of Informatic Unisla is licensed under an Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. You are free to:
- Share copy and redistribute the material in any medium or format
- Adapt remix, transform, and build upon the material for any purpose, even commercially. This license is acceptable for Free Cultural Works.
The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- Share Alike If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Copyright
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Joutica : Journal of Informatic Unisla by Universitas Islam Lamongan is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://jurnalteknik.unisla.ac.id/index.php/elektronika/index