Pemanfaatan Yolo untuk Pengenalan Kesegaran Buah Mangga
DOI:
https://doi.org/10.30736/jti.v7i1.747Keywords:
mangga, identifikasi, yoloAbstract
Buah merupakan salah satu kebutuhan selain makanan pokok, tidak hanya dikalangan tertentu saja, tapi disemua kalangan. Indonesia menjadi penghasil mangga terbesar keempat di dunia. Sehingga diperlukan suatu sistem yang dapat secara otomatis mengidentifikasi kebusukan dan kesegaran dari 3 jenis buah Mangga menggunakan pengolahan gambar, memperbaiki teknik penyortiran dan penilaian yang tidak ilmiah yang dilakukan secara manual, sehingga bisa meningkatkan kualitas jual mangga dengan menggunakan algoritma YOLO. Penelitian ini menggunakan 3 jenis mangga yang terdiri dari mangga golek, gedong, dan manalagi, dan melakukan uji coba dengan beberapa sekenario yaitu semua gambar mangga segar, semua gambar mangga busuk, dan semua gambar mangga segar dan busuk. Hasil dari penelitian menunjukkan beberapa uji coba yang dilakukan, maka didapatkan nilai rata-rata precision, recall, dan f1- score Skenario pertama yaitu mangga segar semua didapatkan tingkat akurasi 80%, precision 82%, dan recall 87%, didapatkan F1-score 84%. Kemudian sknario yang kedua yaitu mangga busuk semua didapatkan tingkat akurasi 76%, precision 76%, dan recall 87%, didapatkan F1-score 81%. Dan yang ketiga yaitu mangga segar dan busuk, didapatkan tingkat akurasi 73%, precision 66%, dan recall 81%, didapatkan F1-score 73%. dapat disimpulkan bahwa hasil penelitian ini masih tergolong underfitting. Hal ini dikarenakan masih butuh banyak dataset yang lebih banyak dan variannya yang mempunyai ciri-ciri yang ada kemiripan masing-masing kelasnya.Downloads
References
Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional neural network. 2017 International Conference on Engineering and Technology (ICET), 1–6.
Dharmadi, R., & medium.com. (2018). Convolutional Layer. Https://Medium.Com/. https://medium.com/nodeflux/mengenal-convolutional-layer-dan-pooling-layer-3c6f5c393ab2
Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2010). The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88(2), 303–338.
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 580–587.
Jmour, N., Zayen, S., & Abdelkrim, A. (2018). Convolutional neural networks for image classification. 2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET), 397–402.
Lan, W., Dang, J., Wang, Y., & Wang, S. (2018). Pedestrian detection based on YOLO network model. 2018 IEEE International Conference on Mechatronics and Automation (ICMA), 1547–1551.
Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 7263–7271.
Zitnick, C. L., & Dollár, P. (2014). Edge boxes: Locating object proposals from edges. European Conference on Computer Vision, 391–405.
Downloads
Published
How to Cite
Issue
Section
License
Joutica : Journal of Informatic Unisla is licensed under an Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. You are free to:
- Share copy and redistribute the material in any medium or format
- Adapt remix, transform, and build upon the material for any purpose, even commercially. This license is acceptable for Free Cultural Works.
The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- Share Alike If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Copyright
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Joutica : Journal of Informatic Unisla by Universitas Islam Lamongan is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://jurnalteknik.unisla.ac.id/index.php/elektronika/index