Identifikasi Ikan Sebagai Protein Hewani Pencegah Stunting dengan Pendekatan Machine Learning
DOI:
https://doi.org/10.30736/informatika.v9i1.1150Keywords:
Algoritma, CNN, Dataset, Machine learning, Prevalensi stuntingAbstract
Prevalensi stunting di Indonesia menunjukkan tren menurun, namun masih tergolong tinggi karena lebih dari 20%. Angka prevalensi merupakan angka jumlah kasus stunting pada balita dalam suatu populasi tertentu. Tujuan dari penelitian ini yaitu melakukan identifikasi jenis ikan sebagai protein hewani pencegah stunting dengan pendekatan machine learning. Metode yang digunakan itu menggunakan algoritma CNN yang merupakan bagian dari machine learning. Hasil dari penelitian ini menghasilkan identifikasi ikan secara tepat. Dengan jumlah dataset sebesar 20, hasil akurasi model didapatkan sebesar 50%, ketika jumlah datasetnya ditingkatkan sebesar 40, maka didapat hasil akurasi model sebesar 87.50%. Kesimpulan dari penelitian ini bahwasannya semakin banyak jumlah dataset yang digunakan maka akan semakin meningkatkan nilai akurasi modelnya.
Downloads
References
Pustaka
K. RI, “jdih.kemkes.go.id,” pp. 1–52, 2022.
Perpres RI, “Peraturan Presiden No. 28,” no. 1, 2021.
A. Wulandari Leksono et al., “Risiko Penyebab Kejadian Stunting pada Anak,” J. Pengabdi. Kesehat. Masy. Pengmaskesmas, vol. 1, no. 2, pp. 34–38, 2021.
Z. Zurhayati and N. Hidayah, “Faktor Yang Berhubungan Dengan Kejadian Stunting Pada Balita,” JOMIS (Journal Midwifery Sci., vol. 6, no. 1, pp. 1–10, 2022, doi: 10.36341/jomis.v6i1.1730.
L. Rustiyani and R. Susilo, “Analisis Faktor Yang Menyebabkan Stunting Di Wilayah Kerja Puskesmas Kemangkon,” Hum. Care J., vol. 5, no. 4, p. 1025, 2020, doi: 10.32883/hcj.v5i4.837.
A. M. Aulia, R. S. Tarigan, H. T. Wibowo, and G. Dwiatma, “Penerapan E-Gudang Sebagai Tempat Penampungan Ikan,” OSF Prepr., vol. 5, no. 3, pp. 248–253, 2022.
S. S. Fitrah, I. Dewiyanti, and T. Rizwan, “Identifikasi Jenis Ikan Di Perairan Laguna Gampoeng Pulot Kecamatan Leupung Aceh Besar,” J. Ilm. Mhs. Kelaut. dan Perikan. Unsyiah, vol. 1, no. 1, pp. 66–81, 2016.
A. N. Kusumanto, RD. Tompunu, “Pengolahan citra digital untuk mendeteksi obyek menggunakan pengolahan warna model normalisasi rgb,” Semin. Nas. Teknol. Inf. Komun. Terap., 2011, doi: 10.1016/S0166-1116(08)71924-1.
I. Wulandari, H. Yasin, and T. Widiharih, “Klasifikasi Citra Digital Bumbu Dan Rempah Dengan Algoritma Convolutional Neural Network (Cnn),” J. Gaussian, vol. 9, no. 3, pp. 273–282, 2020, doi: 10.14710/j.gauss.v9i3.27416.
T. Nurhikmat, “Implementasi Deep Learning untuk image classification menggunakan algoritma convolutional neural network (cnn) pada citra wayang golek,” 2018.
A. Santoso and G. Ariyanto, “Implementasi Deep Learning berbasis Keras untuk Pengenalan Wajah,” Emit. J. Tek. Elektro, vol. 18, no. 1, pp. 15–21, 2018, doi: 10.23917/emitor.v18i01.6235.
A. Saxena, “An Introduction to Convolutional Neural Networks,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 12, pp. 943–947, 2022, doi: 10.22214/ijraset.2022.47789.
A. Peryanto, A. Yudhana, and R. Umar, “Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation,” J. Appl. Informatics Comput., vol. 4, no. 1, pp. 45–51, 2020, doi: 10.30871/jaic.v4i1.2017.
W. Widystuti and J. B. B. Darmawan, “Pengaruh jumlah data set terhadap akurasi pengenalan dalam deep convolutional network,” Konf. Nas. Sist. Inf., pp. 8–9, 2018.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rini Nuraini, Amir Ali
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Joutica : Journal of Informatic Unisla is licensed under an Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. You are free to:
- Share copy and redistribute the material in any medium or format
- Adapt remix, transform, and build upon the material for any purpose, even commercially. This license is acceptable for Free Cultural Works.
The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- Share Alike If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Copyright
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Joutica : Journal of Informatic Unisla by Universitas Islam Lamongan is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://jurnalteknik.unisla.ac.id/index.php/elektronika/index