IMPLEMENTASI EKSTRASI FITUR DAN K-NEAREST NEIGHTBOR UNTUK IDENTIFIKASI WAJAH PERSONAL
DOI:
https://doi.org/10.30736/jti.v3i2.233Keywords:
wajah, ekstrasi, fitur, K-NNAbstract
Wajah atau muka adalah bagian depan kepala pada manusia meliputi wilayah dari dahi hingga dagu, termasuk rambut, dahi, alis, mata, hidung, pipi, mulut, bibir, gigi, kulit, dan dagu. Sebuah sistem biometrika berdasarkan wajah diharapkan dapat menutup kelemahan sistem presensi konvensional yang berdasarkan tanda tangan. Beberapa kelemahan sistem tersebut antara lain, adanya celah kecurangan dalam proses tanda tangan dan waktu perekapan yang cukup lama. Penulis menggunakan metode ektraksi fitur Eigenface PCA sedangkan untuk klasifikasi menggunakan K-Nearest Neighbor. Akurasi pengenalan wajah dengan menggunakan metode ektrasi fitur eigenface dan K-NN mencapai 80%. Nilai rata-rata FAR terendah adalah 20% sedangkan FRR 15%. Semakin banyak data latih yang digunakan akurasinya semakin tinggi. Akurasi optimal didapat pada kondisi jarak 50 cm dengan cahaya terang.Downloads
References
Digital Berbasis Flash pada Perangkat Mobile. Pontianak: Universitas Tanjungpura.
Ahmad, U. 2009. 10 langkah membuat program pengolahan citra menggunakan visual C#. Yogyakarta: Graha Ilmu.
Efendy, Bobby. 2009. Autentifikasi Telapak Tangan pada Citra Digital Menggunakan Metode Support Vector Machine (SVM). Madura: Skripsi Universitas Trunojoyo
Fatta, H. A. 2009. Rekayasa Sistem Pengenalan Wajah. Yogyakarta: ANDI.
Fitriyah, N., dkk. 2015. Analisis dan Simulasi Sistem Pengenalan Wajah dengan Metode Fisherface Berbasis Outdoorvideo. Seminar Nasional Universitas PGRI Yogyakarta. 432-438.
Fuad, N. 2017. Pemanfaatan K-Nearest Neighbor Pada Klasifikasi Image Berdasarkan Pola Fitur dan Tekstur. JUOTICLA, Vol. 2, No. 1.
Kurniawati A. T. dan A. R. Dwi Rama. 2015. Aplikasi Pengenalan Wajah Menggunakan Metode Eigenface dengan Bahasa Pemrograman Java. Seminar Nasional Sains dan Teknologi Terapan III. 315-326.
Pamungkas, D.P., Fajar, R.H. 2017. Implementasi Metode PCA dan Citu Block Distance Untuk Presensi Mahasiswa Berbasis Wajah. Malang: LPPM STIKI Malang
Pratiwi, D. E. dan Agus Harjoko. 2013. Implementasi Pengenalan Wajah Menggunakan PCA (Principal Component Analysis). IJEIS. 3. 175-181.
Putra, Darma, 2009. Sistem Biometrika Konsep Dasar, Teknik Analisis Citra, dan Tahapan membangun Aplikasi Sistem Biometrika. Yogyakarta: ANDI.
Putra, R. S. 2013. Perancangan Aplikasi Absensi dengan Deteksi Wajah Menggunakan Metode Eigenface. Pelita Informatika Budi Darma. 4. 130-137.
Salamun. 2016. Rancang Bangun Sistem Pengenalan Wajah Dengan Metode Principal Component Analysis. Jurnal Teknologi dan Sistem Informasi UNIVRAB VOL. 1 No. 2, Juli 2016, 1.
Sinwar, D., Kaushik, R. 2014. Study of Eucliean And Manhattan Distance matrics using Simple K-Means Clustering. International Journal For Research in Applied Science And Engineering Technology (IJRASET). Vol. 2, No. 5.
Wang, M. Y., Hideaki. T. 2017. Individual Recognition and the Face Inversion Effect in Medaka Fish (Oryzias Latipes). eLife Research Article. (https://search.proquest.com/444260dd-05ba-4edf-a5b7-abcbd0129fd2, diakses 8 Juni 2018).
Wulanningrum, R. 2018. Penggunaan Algoritma K-Nearest Neighbor untuk Identifikasi Citra Kamboja. Generation Journal, Vol. 2, No.2. 2008. Kamus Besar Bahasa Indonesia Edisi Keempat. Jakarta: Gramedia Pustaka Utama
Downloads
Published
How to Cite
Issue
Section
License
Joutica : Journal of Informatic Unisla is licensed under an Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. You are free to:
- Share copy and redistribute the material in any medium or format
- Adapt remix, transform, and build upon the material for any purpose, even commercially. This license is acceptable for Free Cultural Works.
The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- Share Alike If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Copyright
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Joutica : Journal of Informatic Unisla by Universitas Islam Lamongan is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://jurnalteknik.unisla.ac.id/index.php/elektronika/index