PROSES EKSTRAKSI DAN KLASIFIKASI CITRA EMOSI MENGGUNAKAN METODE PCA DAN CNN
DOI:
https://doi.org/10.30736/jti.v6i2.664Keywords:
Artificial IntelegentAbstract
Manusia secara alami menggunakan ekspresi wajah untuk berkomunikasi dan menunjukan emosi mereka dalam berinteraksi sosial. Ekspresi wajah termasuk kedalam komunikasi non-verbal yang dapat menyampaikan keadaan emosi seseorang kepada orang yang telah mengamatinya. Penelitian ini menggunakan metode Principal Component Analysis (PCA) untuk proses ekstraksi ciri pada citra ekspresi dan metode Convolutional Neural Network (CNN) sebagai prosesi klasifikasi emosi, dengan menggunakan data Facial Expression Recognition-2013 (FER-2013) dilakukan proses training dan testing untuk menghasilkan nilai akurasi dan pengenalan emosi wajah. Hasil pengujian akhir mendapatkan nilai akurasi pada metode PCA sebesar 59,375% dan nilai akurasi pada pengujian metode CNN sebesar 59,386%.Downloads
References
Utami, E., & Wulanningrum, R. (2014). Penggunaan Principal Component Analysis dan Euclidean Distance untuk Identifikasi Citra Tanda Tangan. JURNAL IPTEKKOM (Jurnal Ilmu Pengetahuan & Teknologi Informasi), 16(1), 1-16.
Nugroho Adi Pulung, Fenriana Indah, Arijanto,M.Kom, Rudi “Implementasi Deep Learning Menggunakan Convolutional Neural Network(CNN) pada Ekspresi Manusiaâ€, April 2020. JURNAL ALGOR - VOL. 2 NO. 1
Yusuf Achmad, Wihandika Cahya Randy, Dewi Candra “Klasifikasi Emosi Berdasarkan Ciri Wajah Menggunakan Convolutional Neural Network, November 2019.
Hariri Rohman Fajar, Putra Pamungkas Danar, “Implementasi Metode PCA dan City Block Distance untuk Presensi Mahasiswa Berbasis Wajahâ€, Seminar Nasional Teknologi Informasi, Komunikasi dan Aplikasinya Volume 04, Tahun 2017
Nasution Zulfahmi Muhammad, Nababan Addillah Adli, Syaliman Umam Khairul, Novelan Syahputra Muhammad, Jannah Miftahul “Penerapan Principal Component Analysis (PCA) Dalam Penentuan Faktor Dominan Yang Mempengaruhi Kanker Serviks (Studi kasus: Cervical Cancer dataset)†Jurnal Mantik Penusa Vol. 3, No. 1, Juni 2019
Johnson, W.A. & Wichern, D.W. 2007. Applied Multivariate Statistical Analysis. 6th Edition. Pearson Prentice Hall: New Jersey.
E. P Suartika I Wayan, Wijaya Yudhi Arya, Soelaiman Rully, “Klasifikasi Citra Menggunakan Convolutional Neural Network pada Caltechâ€. Jurnal Teknik ITS Vol. 5, No. 1 Maret 2016
Alamsyah Derry, Pratama Dicky “Implementasi Convolutional Neural Networks (CNN) Untuk Klasifikasi Ekspresi Citra Wajah Pada FER-2013 Dataset†(Jurnal Teknologi Informasi) Vol.4, No.2, Desember 2020.
Shafira Tiara “Implementasi CNN untuk Klasifikasi Citra Tomat Menggunakan Kerasâ€. Maret 2018.
Downloads
Published
How to Cite
Issue
Section
License
Joutica : Journal of Informatic Unisla is licensed under an Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. You are free to:
- Share copy and redistribute the material in any medium or format
- Adapt remix, transform, and build upon the material for any purpose, even commercially. This license is acceptable for Free Cultural Works.
The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- Share Alike If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Copyright
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Joutica : Journal of Informatic Unisla by Universitas Islam Lamongan is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://jurnalteknik.unisla.ac.id/index.php/elektronika/index