PENERAPAN ALGORITMA COLABORATIVE FILTERING UNTUK PEMBERIAN REKOMENDASI PADA PRODUK KAIN TENUN (Studi Kasus Kain Tenun Parengan)

Authors

  • Miftahus Sholihin Fakultas Teknik Program Studi Teknik Informatika

DOI:

https://doi.org/10.30736/jti.v2i1.27

Keywords:

e-commerce, similarity, prediction

Abstract

Electronic commerce (e-commerce) is a concept that can be described as a process of buying and selling goods on the internet or the process of buying and selling or exchange of products, services, and information through information networks including the Internet. In developing e-commerce should be able to provide recommendations to customers. This recommendation aims to provide an overview of information about products that are considered in accordance with the wishes of customers. The method used in this research is Item Based Collaborative Filtering, where the system will look for similarity purchase model (similarity item) With others. The system will search for ratings between items by level The similarities exist. Once the item-to-item rating is obtained, this rating will be used to calculate the value Similarity between items using the Adjusted Cosine Similarity approach. The last process is to calculate the rating prediction value that customers have never done to a particular item. This approach uses Weigted Sum formula results from predicted value will be made recommendations to customers

Downloads

Download data is not yet available.

Author Biography

Miftahus Sholihin, Fakultas Teknik Program Studi Teknik Informatika

Dosen Fakultas Teknik Program Studi Teknik Informatika

References

Suyanto, M. 2005. Aplikasi IT untuk UKM Menghadapi Persaingan Global. Yogyakarta: Kedaulatan Rakyat.

Uyun, S., Fahrurrozi, I., dan Mulyanto, A., 2011. Item Collaborative Filtering untuk Rekomendasi Pembelian Buku secara Online. JUSI, Vol. 1, No. 1 ISSN 2087-8737.

Pratama, Yudhistira Adhitya, et al. “Digital Cakery dengan Algoritma Collaborative Filtering.†JSM (Journal SIFO Mikroskil) 14.1 (2013):79-88.

Kurniawan, Arif, 2016. Sistem Rekomendasi Produk Sepatu Dengan Menggunakan Metode Collaborative Filtering. Seminar Nasional Teknologi Informasi dan Komunikasi 2016 (SENTIKA 2016), Yogyakarta, 18-19 Maret 2016, ISSN: 2089-9815.

Irfan, M, dkk., 2014. Sistem Rekomendasi: Buku Online Dengan Metode Collaborative Filtering. JURNAL TEKNOLOGI TECHNOSCIENTIA, Vol. 7 No. 1 Agustus 2014, ISSN: 1979-8415.

Wiranto., Winarko, E., 2010. Konsep Multicriteria Collaborative Filtering Untuk Perbaikan Rekomendasi. Seminar Nasional Informatika 2010 (semnasIF 2010). UPN â€Veteran†Yogyakarta, 22 Mei 2010. ISSN: 1979-2328.

Goldberg, K., Roeder, T., Gupta, D., and Perkins, C., 2001, Eigentaste : A Constant Time Collaborative Filtering Algorithms, Information Retrieval Journal

Kangas, S., 2002, Collaborative Filtering and Recommendation Systems, LOUHI , Project Research Report, VTT Information Technology

Sarwar, B., Karypis, G., Konstan, J., dan Riedi, J., 2001, Item Based Collaborative Filtering Recommendation Algorthms, University of Minnesota, Minnieapolis

Purwanto, D., 2015, Rekomendasi Paket Pembelian Barang Pada Toko Online Dengan Collaborative Filtering. Seminar Nasional Sains dan Teknologi Terapan III 2015, Institut Teknologi Adhi Tama Surabaya, ISBN 978-602-98569-1-0.

Hakim, I.A.N, 2010. Sistem Rekomendasi Film Berbasis Web Menggunakan Metode Item-Based Collaborative Filtering Berbasis K-Nearest Neighbor. Laporan skripsi sarjana, Program Studi Ilmu Komputer, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam Universitas Pendidikan Indonesia.

PlumX Metrics

Published

2017-08-28

How to Cite

Sholihin, M. (2017). PENERAPAN ALGORITMA COLABORATIVE FILTERING UNTUK PEMBERIAN REKOMENDASI PADA PRODUK KAIN TENUN (Studi Kasus Kain Tenun Parengan). Joutica, 2(1). https://doi.org/10.30736/jti.v2i1.27

Issue

Section

Jouticla Jurnal Teknik Informatika