Adaptive Neuro-Fuzzy Inference System For Forecasting Traffic Volume(Case Study Of National Road Km 41 Kamal)

Authors

  • Agustinus Angkoso Universitas Widya Kartika
  • Muhammad Shofwan Donny Cahyono

DOI:

https://doi.org/10.30736/cvl.v6i2.540

Abstract

The effect of the development of an infrastructure such as shopping centers, settlements, and so on is one study that is generally considered in the governance of a region. Typically, this construction has a major traffic impact. Combined with the effects of population growth, which is constantly growing every year, the flow of traffic is increasingly congested. This is because many of these people choose to own personal vehicles. Tremendous congestion would result from a road capacity that is not proportional to vehicle growth. A traffic analysis was conducted using road traffic volume data to prevent this. This research will attempt to survey a road on National road KM 41 Kamal and use the neuro fuzzy method to forecast traffic volume. The amount of traffic that will be studied is only motorcycles. The results show that with an error percentage of 16.0793%, neuro fuzzy can predict motorcycle traffic volume. It can be inferred from this that Neuro Fuzzy can forecast traffic volume on a road quite well.

Downloads

Download data is not yet available.

References

M. Handajani, “Analisis Pengaruh Struktur Kota - Sistem Transportasi - Konsumsi BBM Kota-Kota Di Jawa,†J. Tek. Sipil dan Perenc., vol. 2, no. 12, pp. 101–110, 2010, doi: 10.15294/jtsp.v12i2.1342.

W. Widodo, N. Wicaksono, and Harwin, “Analisis Volume, Kecepatan, dan Kepadatan Lalu Lintas dengan Metode Greenshields dan Greenberg,†J. Ilm. Semesta Tek., vol. 15, no. 2, pp. 178–184, 2012.

W. Widayani, P. Purwanto, and D. Sutisnanto, “Survei Kepadatan Arus Lalu Lintas di Persimpangan Penceng Jalan RA. Rukmini, Kecapi Kebupaten Jepara,†Rev. Civ. Eng., vol. 1, no. 1, pp. 19–24, 2017.

A. Faiz and H. Prajitno, “Analisis Perkembangan Volume Lalu Lintas dan Manfaat Langsung Sebelum dan Sesudah Operasionalisasi Jembatan Suramadu,†J. Apl. Tek. Sipil, vol. 14, no. 2, pp. 69–76, 2016.

E. A. Ardiansyah, R. Mardiati, and A. Fadhil, “Aplikasi Peramalan Kebutuhan Beban Listrik Menggunakan Metode Adaptive Neuro Fuzzy Inference System (ANFIS),†TELKA - Telekomun. Elektron. Komputasi dan Kontrol, vol. 3, no. 1, pp. 36–48, 2017, doi: 10.15575/telka.v3n1.36-48.

M. I. Azhar and W. F. Mahmudy, “Prediksi Curah Hujan Menggunakan Metode Adaptive Neuro Fuzzy Inference System (ANFIS),†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 11, pp. 4932–4939, 2018.

A. Dianto and A. Pranolo, “Prediksi Laju Pertumbuhan Penduduk Di Kabupaten Sleman Dengan Metode Adaptive Neuro-Fuzzy Inference System (ANFIS) Dan Metode Sugeno,†JSTIE (Jurnal Sarj. Tek. Inform., vol. 6, no. 3, pp. 1–7, 2018, doi: 10.12928/jstie.v6i3.15248.

N. Nikentari, M. Bettiza, and H. Sasty Pratiwi, “Prediksi Kecepatan Angin Menggunakan Adaptive Neuro Fuzzy (ANFIS) dan Radial Basis Function Neural Network (RBFNN),†J. Edukasi dan Penelit. Inform., vol. 4, no. 1, pp. 70–75, 2018, doi: 10.26418/jp.v4i1.25558.

B. Fatkhurrozi, M. A. Muslim, and D. R. Santoso, “Penggunaan Artificial Neuro Fuzzy Inference Sistem (ANFIS) dalam Penentuan Status Aktivitas Gunung Merapi,†J. EECCIS, vol. 6, no. 2, pp. 113–118, 2012.

J. Kusanti and S. Hartati, “Identifikasi Gangguan Neurologis Menggunakan Metode Adaptive Neuro Fuzzy Inference System (ANFIS),†IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 9, no. 2, pp. 187–196, 2015, doi: 10.22146/ijccs.7547.

D. Saepuloh, M. Ramdhan, R. Bramawanto, and S. Suryo Sukoraharjo, “Metode Adaptive Neuro Fuzzy Inference System Pada Aplikasi Sistem Cerdas Pendugaan Produksi Garam,†J. Kelaut. Nas., vol. 14, no. 2, pp. 125–134, 2019, doi: 10.15578/jkn.v14i2.7910.

U. Hani’ah, R. Arifudin, and E. Sugiharti, “Implementasi Adaptive Neuro-Fuzzy Inference System (ANFIS) untuk Peramalan Pemakaian Air di Perusahaan Daerah Air Minum Tirta Moedal Semarang,†Sci. J. Informatics, vol. 3, no. 1, pp. 76–87, 2016, doi: 10.15294/sji.v3i1.6516.

Downloads

PlumX Metrics

Published

2021-10-16

How to Cite

Angkoso, A., & Cahyono, M. S. D. (2021). Adaptive Neuro-Fuzzy Inference System For Forecasting Traffic Volume(Case Study Of National Road Km 41 Kamal). Civilla : Jurnal Teknik Sipil Universitas Islam Lamongan, 6(2), 155–166. https://doi.org/10.30736/cvl.v6i2.540

Issue

Section

Jurnal CIVILA