Evaluasi Otomatis Praktek Pemberian Injeksi dari Input Foto
DOI:
https://doi.org/10.30736/informatika.v8i2.1030Keywords:
Input Foto, Calon Tenaga Medis, CNN, SVMAbstract
Pelayanan terhadap pasien merupakan faktor penting dalam dunia medis. Masalah keterbatasan tenaga medis di negara berkembang maupun zona perang dan daerah pengungsian merupakan alasan banyak peneliti mencoba melakukan penelitian yang mampu membantu tindakan perawatan pasien dan peingkatan kompetensi khususnya memberikan tindakan medis kepada pasien. Berdasarkan masalah tersebut penelitian ini bertujuan mengembangkan aplikasi yang dapat membantu dalam pembelajaran bagi calon tenaga medis khususnya pada praktek pemberian injeksi. Penelitian ini menggunakan model CNN digunakan melatih sistem untuk menentukan parameter yang digunakan untuk mengklasifikasikan jenis injeksi sedangkan SVM memprediksi kelas subkutan pada data testing pada penelitian ini. Penelitian ini bertujuan untuk mengidenitifikasi jenis injeksi dari data input foto untuk dievaluasi mejadi kelas subcutan dan bukan subcutan dengan tingkat akurasi sebesar 96%, recall sebesar 89% dan presision sebesar 100%.
Downloads
References
Tamim Ahmed and K. Rahman, “Real Time Injecting Device With Automated Robust Vein Detection Using Near Infrared Camera And Live Video”, Oktober 2017.
Caitlin T and Yeo, Tamas,“The Effect Of Augment Reality Training On Percutaneous Needle Placement In Spinal Facet Joint Injections”, 7 Juli 2011
Jahanzaib Latif, “Medical Imaging using Machine Learning and Deep Learning Algorithms”,2019
Sulis Setiowati, Zulfanahri, Eka Legya Franita, Igi Ardiyanto,” A Review of Optimization Method in Face Recognition: Comparison Deep Learning and Non-Deep Learning Methods”, 13 juli 2018
Kui Liu and Guixia Kang“Breast Cancer Classification Based on Fully-Connected Layer First Convolutional Neural Network”, 2018
Fatih Ertam and Galip AydÕn, “Data Classification with Deep Learning using Tensorflow”, 2017
Mark Hochman,”Improving needle tip identification during ultrasound-guided procedures in anaesthetic practice”, 2005
Yanan Sun and Bing Xue, “Automatically Designing CNN Architectures Using Genetic Algorithm for Image Classification secara umum arsitektur”, 2020.
Yanan Sun and Bing Xue,”Evolving Deep Convolutional Neural Networks for Image Classification”, 2019
Qing Li and Weidong Cai,” Medical Image Classification with Convolutional Neural Network”,10 Desember 2014
Yanan Sun, “Automatcally Designing CNN Architectures Using Genetic Algorithm For Image Clasification”, 2020
Laohu Yuan and Dongshan Lian, “ Rolling Bearing Fault Diagnosis Based On Convolutional Neural Network And Support Vector Machine”, 2020
Abien Fred and M. Agarap,”An Architecture Combining Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for Image Classification”, 2019
Yanan Sun and Bing Xue, “Automatically Designing CNN Architectures Using Genetic Algorithm for Image Classification and SVM”,2021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Novi Duwi Setyorini, Endang Setyati, Devi Dwi Purwanto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Joutica : Journal of Informatic Unisla is licensed under an Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. You are free to:
- Share copy and redistribute the material in any medium or format
- Adapt remix, transform, and build upon the material for any purpose, even commercially. This license is acceptable for Free Cultural Works.
The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- Share Alike If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Copyright
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Joutica : Journal of Informatic Unisla by Universitas Islam Lamongan is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://jurnalteknik.unisla.ac.id/index.php/elektronika/index