EKSTRAKSI FITUR-FITUR MORFOLOGI PADA TANDA TANGAN BERDASARKAN PRINSIP GRAFOLOGI

Authors

  • Rafliana Natalia da Silva Teknologi Informasi, Fakultas Sains dan Teknologi, Institut Sains dan Teknologi Terpadu Surabaya
  • Lukman Zaman Teknologi Informasi, Fakultas Sains dan Teknologi, Institut Sains dan Teknologi Terpadu Surabaya
  • Endang Setyati Teknologi Informasi, Fakultas Sains dan Teknologi, Institut Sains dan Teknologi Terpadu Surabaya

DOI:

https://doi.org/10.30736/informatika.v8i1.954

Abstract

Tanda tangan merupakan unsur penting dalam grafologi yang melambangkan nilai dan kepribadian seseorang. Grafologi secara garis besar dapat menghasilkan informasi kepribadian seseorang melalui pola tanda tangan dengan menggunakan ekstraksi fitur sebagai teknik pengolahan citra yang dilihat dari besar kecilnya tulisan, gaya tulisan, kemiringan tulisan, jarak antar kata atau antar huruf, ukuran tulisan, dan tekanan tulisan. Fitur-fitur morfologi yang digunakan dalam penelitian ini ada 9 jenis, antara lain: kemudahan dibaca, ukuran tulisan, tekanan tulisan, kemiringan tulisan, posisi goresan, garis bawah, tanda titik, hiasan, dan penggunaan huruf inisial. Dataset yang digunakan terdiri dari 300 sampel data dengan 27 kelas dan distribusi jumlah data untuk setiap kelas adalah 10 data. Tahapan yang dilakukan dalam pembuatan sistem adalah dimulai dengan akuisisi citra, preprocessing, segmentasi, ekstraksi fitur, dan terakhir melakukan klasifikasi berupa ciri-ciri kepribadian. Output dari proses pelatihan data dengan menggunakan segmentasi dan ekstraksi fitur adalah file file yang nantinya dapat digunakan sebagai model untuk tahapan data testing. Output dari hasil data testing adalah hasil identifikasi kepribadian siswa berdasarkan citra tanda tangan yang diinput. Dengan menggunakan ekstraksi fitur-fitur morfologi sebagai teknik pengolahan citra yang telah dilakukan dalam penelitian ini adalah dapat menghasilkan informasi kepribadian siswa melalui pola tanda tangan berdasarkan prinsip grafologi, sehingga dapat membantu guru dalam pembentukan karakter dan proses pengarahan minat dan bakat siswa. Hasil dari penelitian ini diprosentase sekitar 1:3 atau 25% untuk data testing dan 75% untuk data training dengan tingkat akurasi untuk masing-masing kelas sebesar 67,5% dan 64,26% untuk rata-rata akurasi per jenis kelas kategori tanda tangan.

Downloads

Download data is not yet available.

References

Bal, A. & Saha, R. 2016. An Improved Method for Handwritten Document Analysis Using Segmentation, Baseline Recognition and Writing Pressure Detection. Procedia Computer Science, Volume 93, hlm. 403–415.

Coll, R., Fornes, A., & Llados, J. 2009. Graphological Analysis of Handwriting Text Documents for Human Resources Recruitment. International Conference on Document Analysis and Recognition, hlm. 1081-1085.

Fadhilla, M., Saf, M.R.A., & Sahid, D.S.S. 2017. Pengenalan Kepribadian Seseorang Berdasarkan Pola Tulisan Tangan Menggunakan Jaringan Saraf Tiruan. Jurnal Nasional Teknik Elektro dan Teknologi Informasi, Volume 6, No. 3, hlm. 365-373.

Fallah, B. & Khotanlou, H. 2016. Identify Human Personality Parameters Based on Handwriting Using Neural Network. Artificial Intelligence and Robotics hlm. 120–26.

Garoot, A.H., Safar, M. & Suen, C.Y. 2017. A Comprehensive Survey on Handwriting and Computerized Graphology. International Conference on Document Analysis and Recognition, hlm. 621–626.

Gavrilescu, M. 2015. Study on Determining the Myers-Briggs Personality Type Based on Individual’s Handwriting. E-Health and Bioengineering Conference (EHB), hlm. 1–6.

Gupta, R. 2016. Human Behavior Modelling and Analysis Using Artificial Neural Network. International Journal of Engineering Research, Volume 04, Issue 3, hlm. 531-538.

Hashemi, S., Vaseghi, B. & Torgheh, F. 2015. Graphology for Farsi Handwriting Using Image Processing Techniques. IOSR Journal of Electronics and Communication Engineering, Volume 10, Issue 3, hlm. 01-07.

Javed, M., Nagabhushan, P. & Chaudhuri, B.B. 2013. Extraction of Projection Profile, Run Histogram and Entropy Features Straight from Run Length Compressed Text Documents. Asian Conference on Pattern Recognition, hlm. 813-817.

Joshi, P., Agarwal, A., Dhavale, A., Suryavanshi, R. & Kodolikar, S. 2015. Handwriting Analysis for Detection of Personality Traits using Machine Learning Approach. International Journal of Computer Application, Volume 130, No. 15, hlm. 40–45.

Kamath, V., Ramaswamy, N., Karanth, N., Desai, V., & Kulkarni, S.M. 2011. Development of an Automated Handwriting Analysis System. Journal of Engineering and Applied Sciences, Volume 6, No. 9, hlm.135-140.

Kedar, S., Nair, V. & Kulkarni, S. 2015. Personality Identification through Handwriting Analysis: A Review. Internationa Journal of Advanced Research in Computer Science and Software Engineering, Volume 5, Issue 1, hlm, 548-556.

Lokhande, V.R. & Gawali, B.W. 2017. Analysis of Signature for the Prediction of Personality Traits. International Conference on Intelligent Systems and Information Management, hlm. 44–49.

Mukherjee, S. & De, I. 2016. Feature Extraction from Handwritten Documents for Personality Analysis. International Conference on Computer, Electrical & Communication Engineering, hlm. 1–8.

Pamungkas, A. Segmentasi Citra. (https://pemrogramanmatlab.com/pengolahan-citra-digital/segmentasi-citra/ diakses 5 Mei 2021).

Prasetyono, D.S. 2016. Buku Lengkap Grafologi. Yogyakarta: DIVA Press.

Sadhana, Sharma, A. 2015. Human Behavior Modelling and Analysis Using Artificial Neural Network. International Journal of Advanced Research in Computer Science and Software Engineering, Volume 05, Issue 5, hlm. 946-952.

Sen, A. & Shah, H. 2017. Automated Handwriting Analysis System Using Principles of Graphology and Image Processing. International Conference on Innovations in Information, Embedded and Communication Systems, hlm. 1–6.

Temukan Pengertian. Pengertian Pengolahan Citra Digital Tujuan Konsep Operasi dan Contohnya. (https://www.temukanpengertian.com/2013/08/pengertian-pengolahan-citra-digital.html diakses 5 Mei 2021).

PlumX Metrics

Published

2023-03-15

How to Cite

da Silva, R. N., Zaman, L., & Setyati, E. (2023). EKSTRAKSI FITUR-FITUR MORFOLOGI PADA TANDA TANGAN BERDASARKAN PRINSIP GRAFOLOGI. Joutica, 8(1), 38–48. https://doi.org/10.30736/informatika.v8i1.954