Identifikasi Karakteristik Sub-DAS Sungai Biting Menggunakan DEMNAS dan STRM

Authors

  • Afif Amiluddin Universitas Mochammad Sroedji
  • Icha Tatrisya Derka Universitas Mochammad Sroedji

DOI:

https://doi.org/10.30736/jt.v17i1.1263

Keywords:

Batas DAS, DEMNAS, SRTM, SIG, Hidrologi

Abstract

Permasalahan aliran limpasan merupakan salah satu topik hidrologi yang penting dan relevan dalam bidang dinamika lingkungan dan kebencanaan. Meninjau permasalahan tersebut penelitian ini bertujuan untuk menguji sumber data topografi dengan resolusi berbeda, guna memperoleh karakteristik daerah aliran sungai dengan memodelkan aliran permukaan menggunakan SIG dan penginderaan jauh. Dengan menggunakan metode Flow Accumulation (FA) dan Stream Power Index (SPI). Sumber model menggunakan data topografi SRTM dengan resolusi 30 m dan DEMNAS dengan resolusi 8 m. Kedua data di olah dengan metode pengolahan yang sama untuk menghasilkan data Batas DAS, SPI, dan FA. Keandalan model akan divalidasi dengan  survei lapangan dan menggunakan statistik Area Under Curve (AUC). Pengolahan data menunjukan hasil data batas DAS DEMNAS sebesar 9,064.41 ha, SRTM 8,875.95 ha. FA DEMNAS 143,108 km, SRTM 156,133 km. Hasil Validasi menunjukkan nilai SRTM untuk FA 0,943 dan SPI 0.968 untuk DEMNAS, nilai FA 0.97 dan SPI 0.952. Hasil AUC menunjukkan bahwa DEMNAS mempunyai nilai yang lebih tinggi karena nilai resolusinya lebih besar. Resolusi dengan kerapatan yang lebih tinggi menghasilkan pemodelan hidrologi yang lebih presisi dan ketajaman hingga penggunaan skala yang lebih besar.

Downloads

References

Amiruddin, A., Asta, A. and Handayani, R. (2021) ‘Penentuan Batas DAS Tojo Berbasis GIS Menggunakan Perangkat HEC HMS 4.4 dan QGIS 3.16’, Borneo Engineering : Jurnal Teknik Sipil, 5(3), pp. 273–282. Available at: https://doi.org/10.35334/be.v5i3.2223.

Aprilia, R., Hidayah, E. and Junita K, D. (2021) ‘Frequency ratio application for mapping flood susceptibility in Welang Watershed, East Java’, IOP Conference Series: Earth and Environmental Science, 930(1). Available at: https://doi.org/10.1088/1755-1315/930/1/012095.

Chen, Y. et al. (2023) ‘Modeling rules of regional flash flood susceptibility prediction using different machine learning models’, Frontiers in Earth Science, 11(January), pp. 1–17. Available at: https://doi.org/10.3389/feart.2023.1117004.

Chowdhury, M.S. (2024) ‘Flash flood susceptibility mapping of north-east depression of Bangladesh using different GIS based bivariate statistical models’, Watershed Ecology and the Environment, 6(September 2023), pp. 26–40. Available at: https://doi.org/10.1016/j.wsee.2023.12.002.

Costache, R. et al. (2021) ‘Flash-flood potential mapping using deep learning, alternating decision trees and data provided by remote sensing sensors’, Sensors (Switzerland), 21(1), pp. 1–21. Available at: https://doi.org/10.3390/s21010280.

Dan, P.D. et al. (2023) ‘THE USE OF DEM-NAS AND SRTM-DEM AS THE BASIS OF’, pp. 17–26.

Danielson, T. (2013) ‘Utilizing a High Resolution Digital Elevation Model (DEM) to Develop a Stream Power Index (SPI) for the Gilmore Creek Watershed in Winona County, Minnesota’, Resource Analysis, 15, p. 11. Available at: http://www.gis.smumn.edu.

Hidayah, E.- (2023) ‘Penilaian Risiko Banjir dengan Pendekatan Rasio Frekuensi dan AHP di Sub-DAS Jompo, Jember Jawa Timur’, Jurnal Aplikasi Teknik Sipil, 21(1), p. 47. Available at: https://doi.org/10.12962/j2579-891x.v21i1.14670.

Hidayah, E. et al. (2022) ‘Assessing Coastal Flood Susceptibility in East Java, Indonesia: Comparison of Statistical Bivariate and Machine Learning Techniques’, Water (Switzerland), 14(23). Available at: https://doi.org/10.3390/w14233869.

Hidayah, E., Widiarti, W.Y. and Ammarulsyah, A.R. (2022) ‘Zonasi Tingkat Kerawanan Banjir Bandang dengan Sistem Informasi Geografis di Sub-DAS Kaliputih Kabupaten Jember’, Jurnal Teknik Pengairan, 13(2), pp. 273–282. Available at: https://doi.org/10.21776/ub.pengairan.2022.013.02.12.

Kuswardhana, A.T., Hidayah, E. and Wahyono, R.U.A. (2023) ‘Pemetaan Geospasial Risiko Banjir di Sub-DAS Gunting, Jombang Jawa Timur’, Rekayasa Sipil, 17(1), pp. 54–65. Available at: https://doi.org/10.21776/ub.rekayasasipil.2023.017.01.8.

Lukyanchuk, K.A., Kovalchuk, I.P. and Pidkova, O.M. (2020) ‘Application of A remote sensing in monitoring of erosion processes’, Geoinformatics 2020 - XIXth International Conference ‘Geoinformatics: Theoretical and Applied Aspects’ [Preprint], (May). Available at: https://doi.org/10.3997/2214-4609.2020geo131.

Maulana, B.I., Hidayah, E. and Halik, G. (2023) ‘Flood Susceptibility Mapping in Gending District by Comparison Frequency Ratio and Weight of Evidence for Mitigation Strategy’, UKaRsT, 7(1), pp. 17–32. Available at: https://doi.org/10.30737/ukarst.v7i2.3999.

Nurfaika (2015) ‘Analisis Karakterist Morfometri Daerah Aliran Sungai Melalui Pemanfaatan Penginderaan Jauh Dan Sistem Informasi Geografi’, Jurnal Geografi, pp. 1–34.

Pareta, K. and Pareta, U. (2011) ‘Quantitative Morphometric Analysis of a Watershed of Yamuna Basin, India using ASTER (DEM) Data and GIS’, International Journal of Geomatics and Geosciences, 2(1), pp. 248–269.

Rani Mahanta, A. and Singh Rawat, K. (2020) ‘Comparative Analysis of CARTOSAT, ASTER and SRTM Digital Elevation Models for Kancheepuram Watershed’, International Journal of Advanced Research in Engineering and Technology (IJARET), 11(5), pp. 827–834. Available at: https://iaeme.com/Home/issue/.

De Rosa, P. et al. (2019) ‘Stream power determination in GIS: An index to evaluate the most ’sensitive’points of a river’, International Remote Sensing Applied Journal, 11(2), pp. 68–73. Available at: https://doi.org/10.24036/irsaj.v3i2.38.

De Rosa, P., Fredduzzi, A. and Cencetti, C. (2019a) ‘Stream power determination in GIS: An index to evaluate the most ’sensitive’points of a river’, Water (Switzerland), 11(6), pp. 2–9. Available at: https://doi.org/10.3390/w11061145.

De Rosa, P., Fredduzzi, A. and Cencetti, C. (2019b) ‘Stream power determination in GIS: An index to evaluate the most ’sensitive’points of a river’, Water (Switzerland), 11(6). Available at: https://doi.org/10.3390/w11061145.

Taufik, M., Amiluddin, A. and Bioresita, F. (2020) ‘Generated Topographic Data from UAV, For Simple Irrigation Planning (Case Study, Sugar Cane in Jember)’, International Research Journal of Advanced Engineering and Science, 5(1), pp. 245–248.

Vojtek, M. and Vojteková, J. (2016) ‘GIS-based Approach to Estimate Surface Runoff in Small Catchments: A Case Study’, Quaestiones Geographicae, 35(3), pp. 97–116. Available at: https://doi.org/10.1515/quageo-2016-0030.

Yoshihara, N. et al. (2022) ‘Science of the Total Environment Catchment-scale impacts of shallow landslides on stream water chemistry’, Science of the Total Environment, 825, p. 153970. Available at: https://doi.org/10.1016/j.scitotenv.2022.153970.

Zhou, G., Dong, W. and Wei, H. (2019) ‘A fast and simple algorithm for calculating flow accumulation matrices from raster digital elevation models’, Abstracts of the ICA, 1(July), pp. 1–2. Available at: https://doi.org/10.5194/ica-abs-1-434-2019.

Downloads

PlumX Metrics

Published

2025-03-18

How to Cite

Afif Amiluddin, & Icha Tatrisya Derka. (2025). Identifikasi Karakteristik Sub-DAS Sungai Biting Menggunakan DEMNAS dan STRM . Jurnal Teknika, 17(1), 1–12. https://doi.org/10.30736/jt.v17i1.1263

Issue

Section

Jurnal teknika