Pengaruh Pemilihan Banyak Data dan Time Frame dalam Finance Forecasting dengan Linear Regression
DOI:
https://doi.org/10.30736/informatika.v8i2.1049Keywords:
Finance Forecasting, Time Frame, Linear Model, ForexAbstract
Finance forecasting merupakan kegiatan yang berhubungan dengan aktifitas trading yang memiliki resiko yang besar. Pendekatan forecasting merupakan salah satu langkah yang dapat dilakukan untuk meminimalkan resiko melalui bidang ilmu komputer atau Informatika. Dalam hal ini tantangannya adalah membuat sebuah model yang memiliki akurasi yang bagus untuk meminimalkan resiko. Pemilihan time frame dan pengunaan banyak data akan mempengaruhi akurasi karena setiap time frame memiliki range pergerakan yang berbeda. Berdasakan hal tersebut, penelitian ini mencoba menemukan serta melakukan analisa pengaruh time frame dan banyak data sehingga mendapat model evaluasi yang optimal dengan metode linear regression. Beberapa variasi perubahan time frame dan banyak data akan digunakan untuk melihat hasil forecasting terbaik. Dari hasil penelitian diperoleh time frame semakin turun maka hasil evaluasi MSE lebih baik. Sedangkan untuk penurunan jumlah data juga berpengaruh terhadap nilai evaluasi yang semakin kecil. maka dapat disimpulkan bahwa forecasting dalam bidang finance memiliki keunikan karena semakin banyak data tidak menjamin bahwa model yang dihasilkan semakin bagus.
Downloads
References
Cao, J., Li, Z., & Li, J. (2019). Financial time series forecasting model based on CEEMDAN and LSTM. Physica A: Statistical Mechanics and Its Applications, 519, 127–139. https://doi.org/10.1016/j.physa.2018.11.061
Chantarakasemchit, O., Nuchitprasitchai, S., & Nilsiam, Y. (2020). Forex Rates Prediction on EUR/USD with Simple Moving Average Technique and Financial Factors. 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2020, 771–774. https://doi.org/10.1109/ECTI-CON49241.2020.9157907
Du, J., Liu, Q., Chen, K., & Wang, J. (2019). Forecasting stock prices in two ways based on LSTM neural network. Proceedings of 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference, ITNEC 2019, Itnec, 1083–1086. https://doi.org/10.1109/ITNEC.2019.8729026
Handayani, I., Yulius, H., Rahardja, U., Aini, Q., & Febriyanto, E. (n.d.). Longer Time Frame Concept for Foreign Exchange Trading Indicator using Matrix Correlation Technique.
Kurani, A., Doshi, P., Vakharia, A., & Shah, M. (2023). A Comprehensive Comparative Study of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock Forecasting. Annals of Data Science, 10(1), 183–208. https://doi.org/10.1007/s40745-021-00344-x
Mabrouk, N., Chihab, M., Hachkar, Z., & Chihab, Y. (2022). Intraday Trading Strategy based on Gated Recurrent Unit and Convolutional Neural Network: Forecasting Daily Price Direction. International Journal of Advanced Computer Science and Applications, 13(3), 585–592. https://doi.org/10.14569/IJACSA.2022.0130369
Oetama, R. S., Gaol, F. L., Soewito, B., & Warnars, H. L. H. S. (2022). Finding Features of Multiple Linear Regression On Currency Exchange Pairs. Ultima InfoSys : Jurnal Ilmu Sistem Informasi, 13(1), 46–53. https://doi.org/10.31937/si.v13i1.2683
Qin, J., Tao, Z., Huang, S., & Gupta, G. (2021). Stock Price Forecast Based on ARIMA Model and BP Neural Network Model. 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering, ICBAIE 2021, Icbaie, 426–430. https://doi.org/10.1109/ICBAIE52039.2021.9389917
Rundo, F., Trenta, F., di Stallo, A. L., & Battiato, S. (2019). Grid trading system robot (GTSbot): A novel mathematical algorithm for trading FX market. Applied Sciences (Switzerland), 9(9). https://doi.org/10.3390/app9091796
Soni, P., Tewari, Y., & Krishnan, D. (2022). Machine Learning Approaches in Stock Price Prediction: A Systematic Review. Journal of Physics: Conference Series, 2161(1). https://doi.org/10.1088/1742-6596/2161/1/012065
Wang, H., Huang, W., & Wang, S. (2021). Forecasting open-high-low-close data contained in candlestick chart. http://arxiv.org/abs/2104.00581
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Wahyu Cahyo Utomo, Resty Wulanningrum, Intan Nur Farida
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Joutica : Journal of Informatic Unisla is licensed under an Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. You are free to:
- Share copy and redistribute the material in any medium or format
- Adapt remix, transform, and build upon the material for any purpose, even commercially. This license is acceptable for Free Cultural Works.
The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- Share Alike If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Copyright
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Joutica : Journal of Informatic Unisla by Universitas Islam Lamongan is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://jurnalteknik.unisla.ac.id/index.php/elektronika/index