PEMANFAATAN YOLOV4 UNTUK DETEKSI PELANGGARAN HELM DAN MASKER SERTA IDENTIFIKASI PELAT NOMOR MENGGUNAKAN TESSERACT-OCR

Authors

  • Rohmat Syamsul Huda (SINTA ID : 5986827) Prodi Teknik Informatika, Universitas Nusantara PGRI Kediri
  • Resty Wulanningrum (SINTA ID : 5986827) Prodi Teknik Informatika, Universitas Nusantara PGRI Kediri
  • Daniel Swanjaya Prodi Teknik Informatika Universitas Nusantara PGRI Kediri

DOI:

https://doi.org/10.30736/informatika.v7i2.873

Keywords:

deteksi objek, pengenalan karakter, yolo, deep learning

Abstract

Dunia sedang dilanda pandemi sehingga mengharuskan manusia memakai masker saat berada di luar ruangan. Dalam rangka mencegah persebaran virus dan memastikan ketertiban pengendara sepeda motor, penting bagi pengendara sepeda motor memakai helm dan masker secara bersamaan. Oleh sebab itu dibuatlah program yang dapat mendeteksi pelanggaran helm dan masker serta mendapatkan nomor plat pelanggar secara otomatis. penelitian ini menggunakan metode transfer learning YOLOv4 dan memanfaatkan Tesseract-OCR. YOLOv4 mampu mendeteksi objek helm, masker, sepeda motor dan plat dalam satu gambar. Dengan menggunakan dataset sejumlah 600 gambar menghasilkan 8 model, model dengan Mean Average Precision (mAP) tertinggi 93.38% dan F1-Score 0.77. model dengan F1-Score tertinggi 0.86 dengan mAP 88.78%. Dapat disimpulkan bahwa model dengan F1-Score tertinggi lebih baik dalam deteksi dan klasifikasi objek. Sementara pelatihan model Tesseract membantu meningkatkan identifikasi karakter pelat nomor.

Downloads

Download data is not yet available.

References

Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao. 2020. “YOLOv4: Optimal Speed and Accuracy of Object Detection.â€

BPS. 2022a. “Jumlah Kecelakaan, Korban Mati, Luka Berat, Luka Ringan, Dan Kerugian Materi 2017-2019.†Retrieved April 19, 2022 (https://www.bps.go.id/indicator/17/513/1/jumlah-kecelakaan-korban-mati-luka-berat-luka-ringan-dan-kerugian-materi.html).

BPS. 2022b. “Perkembangan Jumlah Kendaraan Bermotor Menurut Jenis (Unit), 2018-2020.†Retrieved April 19, 2022 (https://www.bps.go.id/indicator/17/57/1/perkembangan-jumlah-kendaraan-bermotor-menurut-jenis.html).

Chen, Qingqiang, Qianghua Xiong, Qingqiang Chen, and Qianghua Xiong. 2020. “Garbage Classification Detection Based on Improved YOLOV4.†Journal of Computer and Communications 8(12):285–94. doi: 10.4236/JCC.2020.812023.

dafont. 2020. “Plat Nomor Font.†Retrieved December 8, 2021 (https://www.dafont.com/plat-nomor.font).

Dong, Shi, Ping Wang, and Khushnood Abbas. 2021. “A Survey on Deep Learning and Its Applications.†Computer Science Review 40.

Kaggle. 2018. “Indonesian Plate Number.†Retrieved November 25, 2021 (https://www.kaggle.com/imamdigmi/indonesian-plate-number).

Kaggle. 2020. “Face Mask Detection.†Retrieved November 25, 2021 (https://www.kaggle.com/andrewmvd/face-mask-detection).

Kemenkes. 2021. “Surat Edaran Kementerian Kesehatan Republik Indonesia Nomor HK.02.02/I/385/2020.â€

Keppres. 2020. “Keputusan Presiden Republik Indonesia Nomor 11 Tahun 2020 Tentang Penetapan Kedaruratan Kesehatan Masyarakat Corona Virus Disease 2019 (COVID-19).â€

Loey, Mohamed, Gunasekaran Manogaran, Mohamed Hamed N. Taha, and Nour Eldeen M. Khalifa. 2021. “Fighting against COVID-19: A Novel Deep Learning Model Based on YOLO-v2 with ResNet-50 for Medical Face Mask Detection.†Sustainable Cities and Society 65. doi: 10.1016/j.scs.2020.102600.

Lu, Junyan, Chi Ma, Li Li, Xiaoyan Xing, Yong Zhang, Zhigang Wang, and Jiuwei Xu. 2018. “A Vehicle Detection Method for Aerial Image Based on YOLO.†Journal of Computer and Communications 06(11):98–107. doi: 10.4236/jcc.2018.611009.

Maliye, Shravani, Jayom Oza, Jayesh Rane, and Nileema Pathak. 2021. “Mask and Helmet Detection in Two-Wheelers Using YOLOv3 and Canny Edge Detection.†Www.Irjet.Net 08(04).

Padilla, Rafael, Sergio L. Netto, and Eduardo A. B. Da Silva. 2020. “A Survey on Performance Metrics for Object-Detection Algorithms.†in International Conference on Systems, Signals, and Image Processing. Vols. 2020-July.

Raza, Kazim, and Song Hong. 2020. “Fast and Accurate Fish Detection Design with Improved Yolo-v3 Model and Transfer Learning.†International Journal of Advanced Computer Science and Applications (2). doi: 10.14569/ijacsa.2020.0110202.

Redmon, Joseph, and Ali Farhadi. 2018. “YOLOv3: An Incremental Improvement.â€

Republik Indonesia. 2009. “Undang-Undang Republik Indonesia Nomor 22 Tahun 2009 Tentang Lalu Lintas Dan Angkutan Jalan.â€

Sabu, Abin M., and Anto Sahaya Das. 2018. “A Survey on Various Optical Character Recognition Techniques.†in Proc. IEEE Conference on Emerging Devices and Smart Systems, ICEDSS 2018.

Smith, Ray. 2007. “An Overview of the Tesseract OCR Engine.†in Proceedings of the International Conference on Document Analysis and Recognition. IEEE.

Sung, Ju Yeong, Saet Byeol Yu, and Se Ho Park Korea. 2020. “Real-Time Automatic License Plate Recognition System Using YOLOv4.†in 2020 IEEE International Conference on Consumer Electronics - Asia, ICCE-Asia 2020.

Wang, Chien Yao, Hong Yuan Mark Liao, Yueh Hua Wu, Ping Yang Chen, Jun Wei Hsieh, and I. Hau Yeh. 2020. “CSPNet: A New Backbone That Can Enhance Learning Capability of CNN.†in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Vols. 2020-June.

Wu, Fan, Guoqing Jin, Mingyu Gao, Zhiwei He, and Yuxiang Yang. 2019. “Helmet Detection Based on Improved YOLO V3 Deep Model.†in Proceedings of the 2019 IEEE 16th International Conference on Networking, Sensing and Control, ICNSC 2019.

Yuliana, Y. 2020. “Corona Virus Diseases (Covid-19): Sebuah Tinjauan Literatur.†Wellness And Healthy Magazine 2(1):187–92. doi: 10.30604/well.95212020.

Zaidi, Syed Sahil Abbas, Mohammad Samar Ansari, Asra Aslam, Nadia Kanwal, Mamoona Asghar, and Brian Lee. 2022. “A Survey of Modern Deep Learning Based Object Detection Models.†Digital Signal Processing 126:103514. doi: 10.1016/J.DSP.2022.103514.

PlumX Metrics

Published

2022-09-15

How to Cite

Huda, R. S., Wulanningrum, R., & Swanjaya, D. (2022). PEMANFAATAN YOLOV4 UNTUK DETEKSI PELANGGARAN HELM DAN MASKER SERTA IDENTIFIKASI PELAT NOMOR MENGGUNAKAN TESSERACT-OCR. Joutica, 7(2), 596–602. https://doi.org/10.30736/informatika.v7i2.873