HSABC Algorithm Pada Optimasi Produksi Daya Pembangkit Berbasis Random Population dan Migrasi Random Walk

Authors

  • AN Afandi Universitas Negeri Malang
  • Farrel Candra W.A. Smart Power and Advanced Energy Systems (SPAES) Research Center

DOI:

https://doi.org/10.30736/jt.v15i2.1143

Keywords:

Biaya, Harvest, Ekonomi, Emissi, Minimum

Abstract

Operasi ekonomis sistem tenaga listrik dibutuhkan agar penyediaan dan produksi daya listrik terjamin dengan kombinasi energy producer yang tepat. Artikel ini bertujuan menentukan kondisi optimal pada proses produksi daya listrik melalui fungsi optimasi economic dispatch dengan inklusi efek emisi dan kondisi teknis operasional. Optimasi menjadi salah satu isu penting dalam produksi daya pembangkit yang cukup rumit untuk ditetapkan secara konvensional, oleh karena Harvest Season Artificial Bee Colony (HSABC) Algorithm digunakan sebagai tool dalam menyelesaikan persoalan optimasi yang dirumuskan dalam pernyataan Combined Economic and Emission Dispatch (CEED). CEED saat ini menjadi salah satu bahasan penting dalam operasi sistem tenaga, sejalan dengan tingginya value add terhadap persoalan emisis global. Sistem yang digunakan adalah model IEEE-30 bus system diadopsi sebagai sistem uji untuk menentukan solusi terbaik pada masalah CEED dengan mempertimbangkan semua constraints yang ada, memantau karakteristik komputasi pada HSABC Algorithm. Untuk melakukan komputasi, maka program HSABC Algorithm dirancang dengan menggunakan random population yang diimplementasikan dengan compromised factor pada kasus CEED, serta dengan random walk untuk pola pergeseran solusi penghitungan biaya optimal pada nilai yang berbeda dalam random population. Dari hasil simulasi dapat dipahami bahwa permintaan beban berdampak pada biaya, emisi polutan, dan produksi daya yang dihasilkan dari pembangkit.

Downloads

Download data is not yet available.

References

. H. Chahkandi Nejad, 1R. Jahani, 1M. Mohammad Abadi, “GAPSO-based Economic Load Dispatch of Power System”, Australian Journal of Basic and Applied Sciences, Vol. 5, No.7, 2011, pp. 606-611.

. M.A. Abido, “Multiobjective Evolutionary Algorithms for Electric Power Dispatch Problem”, IEEE Transactions on Evolutionary Computation, Vol. 10, No. 3, 2006, pp. 315-329.

. Samir Sayah, Khaled Zehar, “Economic Load Dispatch with Security Constraints of the Algerian Power System using Successive Linear Programming Method”, Leonardo Journal of Science, Issue 9, July-Dec, 2006, pp.73-86.

. Yunzhi Cheng, Weiping Xiao, Wei-Jen Lee and Ming Yang, “A New Approach for Missions and Security Constrained Economic Dispatch”, Proc. NAPS, IEEE Conference Publication, Starkville USA, 4-6 Oct 2009, pp. 1-5.

. M.A. Abido, “Enviranmental/economic power dispatch using multiobjective evolutionary algorithm”, IEEE Trans. Power Systems, Vol. 18, No. 4, 2003, pp. 1529-1537.

. Fahad S. Abu-Mouti and M.E.El-Hawary, “Optimal distributed generation allocation and sizing in distribution system via artificial bee colony algorithm”, IEEE Journal & Magazines, Vol. 26, Issue. 4, 2011, pp. 2090-2101.

. A.A. El-Keib, H.Ma, and J.L. Hart, “Environmentally constrained ED using the lagrangian relaxation method”, IEEE Trans. Power Systems, Vol. 9, Issue. 4, 1994, pp. 1723-1729.

. K. Sathish Kumar, V.Tamilselvan, N.Murali, R.Rajaram, N.Shanmuga Sundaram and T.Jayabarathi, “Economic load dispatch with emission constraints using various PSO algorithm,” WSEAS Transaction on Power System, Vol. 3, Issue. 9, 2008, pp. 598-607.

. R.Gopalakrishnan, A.Krishnan, “A novel combined economic and emission dispatch problem solving technique using non-dominated ranked genetic algorithm,” European Journal of Scientific Research, Vol. 64, No. 1, 2011, pp. 141-151.

. Yong Fu, Mohammad Shahidehpour, Zuyi Li : “AC Contingency Dispatch Based on Security Constrained Unit Commitment”, IEEE Transactions on Power Systems, Vol. 21, pp. 897-908 (2006)

. Yong Fu, Mohammad Shahidehpour, Zuyi Li, “Security constrained unit commitment with AC constraints”, IEEE Trans. Power Systems, Vol. 20, No. 3, 2005, pp. 1538-1550.

. B.H. Chowdhury, Saifur Rahman, “A review of recent advances in economic dispatch”, IEEE Trans. On Power Systems, Vol. 5, Issue. 4, 1990, pp.1248-1259.

. Ahmed Farag, Samir Al-Baiyat, T.C. Cheng, “Economic load dispatch multiobjective optimization procedures using linear programming techniques”, IEEE Trans. Power Systems, Vol. 10, Issue. 2, 1995, pp. 731-738.

. Mukesh Garg, Surender Kumar, “A survey on environmental economic load dispatch using lagrange multiplier method”, International Journal of Electronics & Communication Technology, Vol. 3, Issue. 1, 2012, pp.43-46.

. S. Subramanian, and S. Ganesa, “A simplified approach for ED with piecewise quadratic cost functions”, International Journal of Computer and Electrical Engineering, Vol. 2, No. 5, 2010, pp. 793-798.

Jurnal Teknika (Jurnal Fakultas Teknik Universitas Islam Lamongan) ISSN: 2503-071X

Volume XX, No.X, Tahun 20xx e-ISSN : 2620-4770

Tersedia Online http://www.jurnalteknik.unisla.ac.id/index.php/teknika/index

DOI : 10.30736/jt, Hal 0 -100

. Ioannis G. Damausis, Anastasios G. Bakirtzis, Petros S. Dokopoulos, “Network constrained economic dispatch using real coded genetic algorithm”, IEEE Trans. Power Systems, Vol. 18, No. 1, 2003, pp. 198-205.

. M. A. Aziz, J. I. Musirin and T. K. A. Rahman, “Solving dynamic ED using evolutionary programming”, Proc. First International Power and Energy Conference, Putra Jaya, 28-29 Nov 2006, pp. 144-149.

. T. Yalcinoz and M. J. Short, “Large-scale ED using an improved hopfield neural network”, IEE Proc. Gener. Transm. Distrib, Vol. 144, Issue. 22, 1997, pp. 181-185.

. Y. Abdelaziz, S. F. Mekhamer, M. A. L. Badr, and M. Z. Kamh, “ED using an enhanced hopfield neural network”, Electric Power Components and Systems, Vol. 36, No. 7, 2008, pp. 719-732.

. Z.-L. Gaing, “Particle swarm optimization to solving the ED considering the generator constraints”, IEEE Trans. Power Systems, Vol. 18, No. 3, 2003, pp.1187-1195.

. Dervis Karaboga, “An Idea Based on Honey Bee Swarm for Numerical Optimization”, Technical Report-TR06, Erciyes University, Turkey, 2005.

. Milos Subotic, “Artificial Bee Colony Algorithm for Constrained Optimization Problems Modified with Multiple Onlookers”, International Journal and Mathematical Models and Methods in Applied Sciences, Vol. 6, Issue. 2, 2012, pp.314-322.

. Nadezda Stanarevic, Milan Tuba, Nebojsa Bacanin, “Modified Artificial Bee Colony Algorithm for Constrained Problems Optimization”, International Journal of Mathematical Models and Methods in Applied Science, Vol. 5, Issue. 3, 2011, pp. 644-651.

. Efren Mezura Montes, Mauricio Damian Araoz, Omar Centina Dominges, “Smart Flight and Dynamic Tolerances in the Artificial Bee Colony for Constrained Optimization”, Proc. IEEE Congress on Evolutionary Computation CEC , Barcelona, 18-23 July 2010, pp. 1-8.

. Karaboga D, Basturk B, “A Powerful and Efficient Algorithm for Numerical Function Optimization: ABCAlgorithm,” J. of Global Optimization, Vol. 39, No. 0925-5001, 2007, pp. 459-471.

. C. Christoper Columbus and Sishaj P. Simon, “A parallel ABC for security constrained economic dispatch using shared memory model”, Proc. 2012 EPSCICON IEEE Conference Publication, Thrissur Kerala, 3-6 Jan 2012, pp. 1-6.

. A.N. Afandi, Hajime Miyauchi, “Multiple Food Sources for Composing Harvest Season Artificial Bee Colony Algorithm on Economic Dispatch Problem”, Proc. The 2013 Annual Meeting of the IEEJ, Nagoya, 20-22 March 2013, No. 6-008, pp. 11-12.

. Hadi Saadad, “Electric Power System”, Mc. Graw Hill, New York, 1999.

. H. Shayeghi, A. Ghasemi, “Application of MOFSO for economic load dispatch solution with transmission losses”, IJTPE Journal, Vol. 4, No. 1, 2012, pp.27-34.

Downloads

PlumX Metrics

Published

2023-10-14

How to Cite

Afandi, A., & Candra W.A., F. (2023). HSABC Algorithm Pada Optimasi Produksi Daya Pembangkit Berbasis Random Population dan Migrasi Random Walk. Jurnal Teknika, 15(2), 117–124. https://doi.org/10.30736/jt.v15i2.1143

Issue

Section

Jurnal teknika