KOMBINASI METODE ENSEMBLE, CFS DAN POHON KEPUTUSAN UNTUK PREDIKSI KINERJA PETUGAS STUDI KASUS: SURVEY PODES BADAN PUSAT STATISTIK

Authors

  • Eko Hardiyanto Badan Pusat Statistik - BPS

DOI:

https://doi.org/10.30736/jti.v5i1.390

Keywords:

prediksi, kinerja petugas, survey bps, podes, badan pusat statistik

Abstract

Kegiatan rilis data pada pendataan Potensi Desa (Podes) Badan Pusat Statistik pada kurun waktu sembilan tahun terakhir, selalu mengalami keterlambatan. Untuk meminimalisir agar keterlambatan tidak terjadi secara berulang, penelitian bertujuan memprediksi kinerja petugas berdasarkan faktor internal dan eksternal sebagai informasi kegiatan di Badan Pusat Statistik (BPS). Pemilihan atribut pada penelitian ini menggunaan nilai gain informasi dan Correlation feature selection (CFS), selanjutnya dilakukan pemodelan dengan algoritma Pohon Keputusan. Hasil penelitian ini menunjukkan akurasi prediksi pada petugas organik BPS meningkat sebesar 10.57 % dari 63,19 % menjadi 69,87 % dengan faktor penentu keterlambatan adalah beban kerja, track record dan kemudahan lokasi, sedangkan pada petugas mitra dengan menggunakan metode CFS akurasi prediksi meningkat sebesar 24,11 % dari 65,78 % menjadi 81,643 % dengan faktor penentu keterlambatan adalah nilai pendalaman,kemampuan bekerja dalam tim, dan profesionalitas.

Downloads

Download data is not yet available.

Author Biography

Eko Hardiyanto, Badan Pusat Statistik - BPS

Pranata Komputer Muda BPS Provinsi Jawa Timur

References

Buku Pedoman Pencacah Podes 2014, Jakarta: BPS, 2014.

Al-radaideh, Q. A., dan Nagi, E. Al., “Using Data Mining Techniques to Build a Classification Model for Predicting Employees Performanceâ€, International Journal of Advanced Computer Science and Application, vol. 3, issue 2, 2012, pp. 144 – 151.

Vecchione, M., Alessandri, G., dan Barbaranelli, C., “The Five Factor Model in personnel selection: Measurement equivalence between applicant and non-applicant groupsâ€, Personality and Individual Differences, vol. 52, no.4, 2012, pp. 503–508.

Jantan, H., Hamdan, A. R., dan Othman, Z. A. Human Talent Prediction in HRM using C4.5 Classification Algorithm. International Journal on Computer Science and Engineering, vol. 2, no. 1, 2010, pp. 2526–2534.

Chien, C., dan Chen, L., “Data mining to improve personnel selection and enhance human capital: A case study in high-technology industryâ€, Expert Systems with Applications, vol. 34, no. 1, 2008, 280–290.

Hall, M. A., based Feature Selection for Machine Learning, Thesis for the Doctor of Philosophy, The University of Waikato, 1999, 25-50.

Ricci, F. Rokach, L., Shapira, B., Kantor, P.B., Recommender Systems Handbook, Springer, New York, 2011, 3 – 15.

Lin, E., dan Yang, D., “System Design of an Intelligent Nutrition Consultation and Recommendation Modelâ€, Proceeding of International Conference on Ubiquitous Intelligence and Computing, vol. 9, 2012, pp. 740 – 745.

Kretser, H. E., Wong, R., Roberton, S., “Mobile decision-tree tool technology as a means to detect wildlife crimes and build enforcement networksâ€, Biological Conservation Journal, Elsevier, vol. 189, no. 1, 2015, pp. 33–38.

Wang, C., dan Chuang, J., “Integrating decision tree with back propagation network to conduct business diagnosis and performance simulation for solar companies.†Decision Support Systems Journal, vol. 81, no.1, 2015, pp. 1 – 8.

Peter, T. J., dan Somasundaram, K. “An empirical study on prediction of heart disease using classification data mining techniques“, IEEE International Conference on Advances In Egineering, Science and Managment (ICAESM), vol.1, no.1, 2012, pp. 514–518.

Sohn, S. Y., dan Kim, J. W., “Decision tree-based technology credit scoring for start-up firms: Korean caseâ€. Expert Systems With Applications, vol 39, no.4, 2012, pp. 4007–4012.

Magesh, N., Thangaraj, P., Sivagobika, S., Praba, S., dan Priya, R. M., “Evaluating The Performance Of An Employee Using Decision Tree Algorithmâ€, International Journal of Engineering Research & Technology (IJERT), vol. 2, no.1, 2013, pp. 2814–2830.

Patidar, P., Dangra, J., dan Rawar, M. K., “Decision Tree C4.5 algorithm and its enhanced approach for Educational Data Miningâ€, Enginering Universe for Scientific Research and Management, vol. 7, no. 1, 2015, pp. 1–14.

Shuangcheng, L., dan Ping, W., “Study on the Data preprocessing of the Questionnaire Based on the Combined Classification Data Mining Model.†Proceeding of International Conference on E-Learning, EBusiness, Enterprise Information Systems, and E-Government, 2009, pp. 217–220.

Fayyad, U.M. dan Irani, K.B., “Multi-interval discretisation of continuous- valued attributes for classification learningâ€, In Proceedings of the Thirteenth International Join Conference on Artificial Intelligence, Morgan Kaufmann, 1993, pp. 1022-1027.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., dan Witten, I. H., “The WEKA Data Mining Software: An Updateâ€, SIGKDD Explorations, vol. 11, Issue 1, 2012.

Witten, I. H., Frank, E., dan Hall, M. a., Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, Elsevier, San Francisco, 2011, pp. 41 – 283.

Quinlan, J. R. C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, San Francisco, CA, USA, 1993.

Kohavi, R dan John, G. â€Wrappers for feature subset selection. Artificial Intelligenceâ€, special issue on relevance, vol. 97 no.(1–2), 1996, pp 273–324.

Narendra, P.M. and Fukunaga, K., “A branch and bound algorithmfor feature subset selectionâ€. IEEE Transactions on Computers, vol 26 no. 9, 1977, pp. 28-35.

PlumX Metrics

Published

2020-03-31

How to Cite

Hardiyanto, E. (2020). KOMBINASI METODE ENSEMBLE, CFS DAN POHON KEPUTUSAN UNTUK PREDIKSI KINERJA PETUGAS STUDI KASUS: SURVEY PODES BADAN PUSAT STATISTIK. Joutica, 5(1), 337–345. https://doi.org/10.30736/jti.v5i1.390

Issue

Section

Jouticla Jurnal Teknik Informatika