IMPLEMENTASI ALGORITMA BACKPROPAGATION UNTUK MEMPREDIKSI JUMLAH PENGUNJUNG WISATA MUSIUM (STUDI KASUS DI MUSIUM SUNAN DRAJAT)
DOI:
https://doi.org/10.30736/jti.v6i1.518Keywords:
peramalan, jaringan syaraf tiruan, backpropagationAbstract
Metode peramalan dalam teknologi komputasi sangatlah beragam, beberapa metode yang ada antara lain Peramalan ARIMA, Adaptive Neuro-Fuzzy Inference System (ANFIS), dan Jaringan Saraf Tiruan (JST). Pada artikel ini menyampaikan tentang usaha sebuah penelitian dengan tujuan untuk menerapkan dan mengetahui kinerja jaringan saraf dalam memprediksi jumlah pengunjung wisata museum (studi kasus di musium Sunan Drajat Lamongan). Metode yang digunakan adalah Matlab yang digunakan untuk menganalisis sebuah data yang kemudian dibentuk sebuah arsitektur jaringan terbaik aktif meramalkan jumlah pengunjung musium Sunan Drajat dengan skema 2-6-1 (2 neuron masukan, lapisan tersembunyi 6 neuron, satu neuron output) dengan nilai MSE terkecil 0,00000000277. Nilai MSE selama pelatihan sebesar 7858.75 sedangkan pada saat pengujian di 5.309.807.667. Kesalahan rata-rata hasil simulasi peramalan jumlah wisatawan ke musium Sunan Drajat dalam periode dari Maret hingga Mei 2019 sebesar 9,5%.Downloads
References
H. Hassani, A. Webster, E. S. Silva, and S. Heravi, "Forecasting U.S. Tourist arrivals using optimal Singular Spectrum Analysis," Tourism Management, vol. 46 (2015), pp. 322-335, 2015.
X. Sun, W. Sun, J. Wang, Y. Zhang, and Y. Gao, "Using a GreyeMarkov model optimized by Cuckoo search algorithm to forecast the annual foreign tourist arrivals to China," Touris Management, vol. 52 (2016), pp. 369-379, 2016.
W. Lijuan and C. Guohua, "Seasonal SVR with FOA algorithm for single-step and multi-step ahead forecasting in monthly inbound tourist flow," Knowledge-Based Systems, vol. 110 (2016), pp. 157 - 166, 2016.
O. Claveria and S. Torra, "Forecasting tourism demand to Catalonia: Neural networks vs. time series models," Economic Modelling, vol. 36, pp. 220 - 228, 2014.
Haviluddin and R. Alfred, "Forecasting Network Activities Using ARIMA Method," Journal of Advances in Computer Networks (JACN), vol. 2, (3) September 2014, pp. 173-179, 2014.
M. C. Altunel and B. Erkut, "Cultural tourism in Istanbul: The mediation effect of tourist experience and satisfaction on the relationship between involvement and recommendation intention," Journal of Destination Marketing & Management, vol. 4 (2015), pp. 213 - 221, 2015.
C.-W. Wu, "Foreign tourists' intentions in visiting leisure farms," Journal of Business Research, vol. 68 (2015), pp. 757 - 762, 2015.
B. Majhi, M. Rout, and V. Baghel, "On the development and performance evaluation of a multiobjective GA-based RBF adaptive model for the prediction of stock indices," Journal of King Saud University Computer and Information Sciences, pp. xx-xx, 2014.
H. A. Constantino, P. O. Fernandes, and J. P. Teixeira, "Tourism demand modelling and forecasting with artificial neural network models: The Mozambique case study," TÉKHNE - Review of Applied Management Studies, vol. (2016) xxx,, pp. xxx ---xxx, 2016.
O. Claveria, E. Monte, and S. Torra, "Common trends in international tourism demand: Are they useful to improve tourism predictions?," Tourism Management Perspectives, vol.16 (2015), pp. 116 - 122, 2015.
Downloads
Published
How to Cite
Issue
Section
License
Joutica : Journal of Informatic Unisla is licensed under an Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. You are free to:
- Share copy and redistribute the material in any medium or format
- Adapt remix, transform, and build upon the material for any purpose, even commercially. This license is acceptable for Free Cultural Works.
The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- Share Alike If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Copyright
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Joutica : Journal of Informatic Unisla by Universitas Islam Lamongan is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://jurnalteknik.unisla.ac.id/index.php/elektronika/index