IMPLEMENTASI ALGORITMA BACKPROPAGATION UNTUK MEMPREDIKSI JUMLAH PENGUNJUNG WISATA MUSIUM (STUDI KASUS DI MUSIUM SUNAN DRAJAT)

Authors

  • Muhammad Hasan Wahyudi Universitas Islam Lamongan
  • Purnomo Hadi Susilo Universitas Islam Lamongan

DOI:

https://doi.org/10.30736/jti.v6i1.518

Keywords:

peramalan, jaringan syaraf tiruan, backpropagation

Abstract

Metode peramalan dalam teknologi komputasi sangatlah beragam, beberapa metode yang ada antara lain Peramalan ARIMA, Adaptive Neuro-Fuzzy Inference System (ANFIS), dan Jaringan Saraf Tiruan (JST). Pada artikel ini menyampaikan tentang usaha sebuah penelitian dengan tujuan untuk menerapkan dan mengetahui kinerja jaringan saraf dalam memprediksi jumlah pengunjung wisata museum (studi kasus di musium Sunan Drajat Lamongan). Metode yang digunakan adalah Matlab yang digunakan untuk menganalisis sebuah data yang kemudian dibentuk sebuah arsitektur jaringan terbaik aktif meramalkan jumlah pengunjung musium Sunan Drajat dengan skema 2-6-1 (2 neuron masukan, lapisan tersembunyi 6 neuron, satu neuron output) dengan nilai MSE terkecil 0,00000000277. Nilai MSE selama pelatihan sebesar 7858.75 sedangkan pada saat pengujian di 5.309.807.667. Kesalahan rata-rata hasil simulasi peramalan jumlah wisatawan ke musium Sunan Drajat dalam periode dari Maret hingga Mei 2019 sebesar 9,5%.

Downloads

Download data is not yet available.

References

H. Hassani, A. Webster, E. S. Silva, and S. Heravi, "Forecasting U.S. Tourist arrivals using optimal Singular Spectrum Analysis," Tourism Management, vol. 46 (2015), pp. 322-335, 2015.

X. Sun, W. Sun, J. Wang, Y. Zhang, and Y. Gao, "Using a GreyeMarkov model optimized by Cuckoo search algorithm to forecast the annual foreign tourist arrivals to China," Touris Management, vol. 52 (2016), pp. 369-379, 2016.

W. Lijuan and C. Guohua, "Seasonal SVR with FOA algorithm for single-step and multi-step ahead forecasting in monthly inbound tourist flow," Knowledge-Based Systems, vol. 110 (2016), pp. 157 - 166, 2016.

O. Claveria and S. Torra, "Forecasting tourism demand to Catalonia: Neural networks vs. time series models," Economic Modelling, vol. 36, pp. 220 - 228, 2014.

Haviluddin and R. Alfred, "Forecasting Network Activities Using ARIMA Method," Journal of Advances in Computer Networks (JACN), vol. 2, (3) September 2014, pp. 173-179, 2014.

M. C. Altunel and B. Erkut, "Cultural tourism in Istanbul: The mediation effect of tourist experience and satisfaction on the relationship between involvement and recommendation intention," Journal of Destination Marketing & Management, vol. 4 (2015), pp. 213 - 221, 2015.

C.-W. Wu, "Foreign tourists' intentions in visiting leisure farms," Journal of Business Research, vol. 68 (2015), pp. 757 - 762, 2015.

B. Majhi, M. Rout, and V. Baghel, "On the development and performance evaluation of a multiobjective GA-based RBF adaptive model for the prediction of stock indices," Journal of King Saud University Computer and Information Sciences, pp. xx-xx, 2014.

H. A. Constantino, P. O. Fernandes, and J. P. Teixeira, "Tourism demand modelling and forecasting with artificial neural network models: The Mozambique case study," TÉKHNE - Review of Applied Management Studies, vol. (2016) xxx,, pp. xxx ---xxx, 2016.

O. Claveria, E. Monte, and S. Torra, "Common trends in international tourism demand: Are they useful to improve tourism predictions?," Tourism Management Perspectives, vol.16 (2015), pp. 116 - 122, 2015.

PlumX Metrics

Published

2021-03-31

How to Cite

Wahyudi, M. H., & Susilo, P. H. (2021). IMPLEMENTASI ALGORITMA BACKPROPAGATION UNTUK MEMPREDIKSI JUMLAH PENGUNJUNG WISATA MUSIUM (STUDI KASUS DI MUSIUM SUNAN DRAJAT). Joutica, 6(1), 423–427. https://doi.org/10.30736/jti.v6i1.518

Issue

Section

Jouticla Jurnal Teknik Informatika